A Markov chain Monte Carlo sampler for gene genealogies conditional on haplotype data
نویسنده
چکیده
The gene genealogy is a tree describing the ancestral relationships among genes sampled from unrelated individuals. Knowledge of the tree is useful for inference of population-genetic parameters such as migration or recombination rates. It also has potential application in gene-mapping, as individuals with similar trait values will tend to be more closely related genetically at the location of a trait-influencing mutation. One way to incorporate genealogical trees in genetic applications is to sample them conditional on observed genetic data. We have implemented a Markov chain Monte Carlo based genealogy sampler that conditions on observed haplotype data. Our implementation is based on an algorithm sketched by Zöllner and Pritchard but with several differences described herein. We also provide insights from our interpretation of their description that were necessary for efficient implementation. Our sampler can be used to summarize the distribution of tree-based association statistics, such as case-clustering measures.
منابع مشابه
Markov Chain Monte Carlo Sampling of Gene Genealogies Conditional on Observed Genetic Data
The gene genealogy is a tree describing the ancestral relationships among genes sampled from unrelated individuals. Knowledge of the tree is useful for inference of population-genetic parameters such as the mutation or recombination rate. It also has potential application in genomic mapping, as individuals with similar trait values will tend to be more closely related genetically at the locatio...
متن کامل2 5 Ju n 20 15 Markov Interacting Importance Samplers
We introduce a new Markov chain Monte Carlo (MCMC) sampler called the Markov Interacting Importance Sampler (MIIS). The MIIS sampler uses conditional importance sampling (IS) approximations to jointly sample the current state of the Markov Chain and estimate conditional expectations, possibly by incorporating a full range of variance reduction techniques. We compute Rao-Blackwellized estimates ...
متن کاملAn algorithm to characterize non-communicating classes on complex genealogies
The use of Markov chain Monte Carlo methodology to estimate probability and likelihood functions on complex genealogies has become increasingly popular, providing a practical alternative to methods requiring computation exponentially proportional to the complexity of the pedigree structure. However, in cases with genotypes as latent variables, sampler reducibility can arise as typed individuals...
متن کاملInteracting Particle Markov Chain Monte Carlo
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both noninteracting PMCMC samplers and a s...
متن کاملConvergence of Conditional Metropolis-Hastings Samplers, with an Application to Inference for Discretely-Observed Diffusions
We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler. We develop conditions under which this sampler will be geometrically or uniformly ergodic. We apply our results to an algorithm for drawing Bayesian inferences about the entire sample path of a diffusion process, based only upon di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012